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Big picture

Big Picture

The class is all about how to do good research

Last week we talked about three theories of inference:

Likelihood inference

Bayesian inference

Neyman-Pearson hypothesis testing

Whether they acknowledge it or not, most of the quantitative research
you’ve read in the past relied on likelihood inference, and specifically
maximum likelihood estimation

If it’s not using OLS and doesn’t have a prior, it’s probably MLE
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Big picture

Goals for tonight

By the end of tonight, you should feel comfortable with these three things:

1 Understand the IID assumption and why it’s so important
2 Take a model specification (stochastic/systematic components) and

turn it into a likelihood
3 Turn a likelihood function into a log likelihood and understand why

logs should make us happy
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Defining our model

boston.snow <- c(5,0,2,22,1,0,1,1,0,16,0,0,1,0,1,7,15,1,1,1,0,3,13)

Error: Check your data again. There’s no way Boston’s had that

much snow.
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Defining our model

Running Example

The ten data points for this game:
measles <- c(1,0,2,1,1,0,0,0,0,0)
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Defining our model

Writing out our model

Suppose we want to model these data as our outcome variable.

We’d first need to write out our model by writing out the stochastic and
systematic components.

The outcome is a count of measles cases, so for the stochastic component,
let’s use a Poisson distribution.

For the systematic component, let’s keep things simple and leave out any
explanatory variables. We’ll only model an intercept term.
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Defining our model

Writing out our model

Using the notation from UPM, this model could be written as:

yi ∼ Pois(λi )

λi = eβ0

eβ0 because λ > 0 in the Poisson distribution.

If we had other covariates (such state populations or vaccination rates)
they would enter our model through the systematic component:

yi ∼ Pois(λi )

λi = eβ0+β1xi = eXiβ
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Probability statements from our model

Probability statement with one data point

Imagine that we only had one datapoint (like last week’s section) and that
we knew the true value of λi

With those two pieces of information, we’d be able to calculate the
probability of observing that datapoint given λi :

p(yi |λi ) =
λyii e

−λi

yi !

p(yi = 1|λi = .86) =
.861e−.86

1!

p(yi = 1|λi = .86) = 0.3639
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Probability statements from our model

What if we have more than one observation?

Imagine that we only had two datapoints (1 and 0) and we still knew that
λ = .86

What do we typically assume about those two datapoints when we do
likelihood inference?

Independent and identically distributed (IID)

Identically distributed: the observations are drawn from the same
distribution, conditional on the covariates.
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Probability statements from our model

Independence

Independent: Two events are independent if the occurrence (or magnitude)
of one does not affect the occurrence (or magnitude) of another.

More formally, A and B are independent if and only if

P(A and B) = P(A)P(B)

Why is this important?

Because it makes it easy for us to write out our probability (or likelihood)
function
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Probability statements from our model

Probability statement with two data points

If we know that y1 = 1, y2 = 0, and λ1 = λ2 = .86 then we can calculate
the probability of observing both data points:

p(Y|λi ) = p(y1 = 1|λi ) · p(y2 = 0|λi )

p(Y|λi ) =
λy1

1 e−λ1

y1!
·
λy2

2 e−λ2

y2!

p(Y|λi ) =
2∏

i=1

λyii e
−λi

yi !

p(Y|λi = .86) = 0.3639 · 0.4231

p(Y|λi = .86) = 0.1540
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Likelihood functions

Writing a likelihood function

What if we don’t know the value of λ?

If we did, it probably wouldn’t make for very interesting research.

Put another way, if we knew the value of our parameters, then we could
analytically calculate p(Y|λ)

But we don’t know λ, so what we’re really interested in is p(λ|Y)

And recall from lecture that:

P(λ|Y) =
P(λ)P(Y|λ)∫
P(λ)P(Y|λ)dλ
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Likelihood functions

Writing a likelihood function

P(λ|Y) =
P(λ)P(Y|λ)∫
P(λ)P(Y|λ)dλ

By the likelihood axiom:

L(λ|Y) ≡ k(Y)P(Y|λ)

L(λ|Y) ∝ P(Y|λ)

In a likelihood function, the data is fixed and without variance and the
parameters are variables
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Likelihood functions

Proportionality

Throughout the semester you’re going to become intimately familiar with
the proportionality symbol, ∝

Why are we allowed to use it?
Why can we get rid of constants (like k(Y)) from our likelihood function?
Wouldn’t our estimates of λ̂MLE be different if kept the constants in?

No.
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Likelihood functions

Proportionality

Remember from 8th grade when you learned about transformations of
variables?

Multiplying a function by a constant vertically shrinks or expands the
function, but it doesn’t change the horizontal location of peaks and valleys.
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Likelihood functions

Proportionality
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Likelihood functions
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Likelihood functions

Proportionality

The likelihood function is not a probability density!

But it is proportional to the probability density, so the value that
maximizes the likelihood function also maximizes the probability density.
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Likelihood functions

Writing a likelihood function

L(λi |Y) ∝ P(Y|λi )

L(λi |Y) ∝
n∏

i=1

λyii e
−λi

yi !

Get rid of any constants, i.e. any terms that don’t depend on the
parameters:

L(λi |Y) ∝
n∏

i=1

λyii e
−λi
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Log likelihoods

Why do we use log-likelihoods?

When we begin to optimize likelihood functions, we always take the log of
the likelihood function first.

Why?

1 Computers don’t handle small decimals very well. If you’re multiplying
the probability of 10,000 datapoints together, you’re going to get a
decimal number that’s incredibly tiny. Your computer could have an
almost impossible time finding the maximum of such a flat surface.

2 The standard errors of maximum likelihood estimates are a function
of the log-likelihood, not the likelihood.
If you use R to optimize a likelihood function without taking the log,
you are guaranteed to get the wrong standard error estimates.
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Log likelihoods

8th Grade Algebra Review: Logarithms

The log function can be thought of as an inverse for exponential functions.

y = loga(x)⇐⇒ ay = x

In this class we’ll always use the natural logarithm, loge(x). Typically we’ll
just write log(x), but you should always assume that the base is Euler’s
number, e = 2.718281828.

What’s the name of this friendly
looking gentleman who discovered

Euler’s number, e?

Jacob Bernoulli
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Log likelihoods

8th Grade Algebra Review: Properties of logs

Five rules to remember:

1 log(xy) = log(x) + log(y)

2 log(xy ) = y log(x)

3 log(x/y) = log(x · y−1) = log(x) + log(y−1) = log(x)− log(y)

4 Base change formula:

logb(x) =
loga(x)

loga(b)

5
∂ log(x)
∂x = 1

x

Stephen Pettigrew From Model to Log Likelihood February 18, 2015 27 / 38



Log likelihoods

Writing out the log-likelihood

Recall that the likelihood for the Poisson(λ) is:

L(λi |Y) ∝
n∏

i=1

λyii e
−λi

It’s easy to get the log likelihood:

`(λi |Y) ∝ log

( n∏
i=1

λyii e
−λi
)
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Log likelihoods

Writing out the log-likelihood

`(λi |Y) ∝ log

( n∏
i=1

λyii e
−λi
)

There’s a proof of this step in the appendix of these slides:

`(λi |Y) ∝
n∑

i=1

log

(
λyii e

−λi
)

`(λi |Y) ∝
n∑

i=1

(
log(λyii ) + log(e−λi )

)

`(λi |Y) ∝
n∑

i=1

(
yi log(λi )− λi

)
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Log likelihoods

What about the systematic components?

We still haven’t accounted for the systematic part of our model!

Recall that our model was:

yi ∼ Pois(λi )

λi = eβ0

Luckily, that’s the easiest part to do. If our log-likelihood is:

`(λi |Y) ∝
n∑

i=1

(
yi log(λi )− λi

)
We account for the systematic component by substituting in eβ0 every
time we see a λi :

`(β0|Y) ∝
n∑

i=1

(
yi log(eβ0)− eβ0

)
∝

n∑
i=1

(
yi · β0 − eβ0

)
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Log likelihoods

What about the systematic components?

If our model were more complicated, with covariates:

yi ∼ Pois(λi )

λi = eβ0+β1xi = eXiβ

We account for them in the same way, by substituting in exiβ every time
we see a λi :

`(β|Y,X) ∝
n∑

i=1

(
yi log(exiβ)− exiβ

)

`(β|Y,X) ∝
n∑

i=1

(
yi · xiβ − exiβ

)
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Log likelihoods

How would we code this log-likelihood in R?

Next week Solé will show you up to use R to optimize log-likelihood
functions. In order to do that you’ll have to be comfortable coding the
log-likelihood as a function.

`(β|Y,X) ∝
n∑

i=1

(
yi · xiβ − exiβ

)
For this likelihood you’ll have to write a function that takes a vector of
your parameters ({β0, β1}), your outcome variable (Y), and the matrix of
your covariates (X)
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Log likelihoods

How would we code this log-likelihood in R?

`(β|Y,X) ∝
n∑

i=1

(
yi · xiβ − exiβ

)
loglike <- function(parameters, outcome, covariates){

cov <- as.matrix(cbind(1, covariates))

xb <- cov %*% parameters

sum(outcome * xb - exp(xb))

}
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Log likelihoods

Any questions?
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Appendix

Appendix

The switch the proportionality (and getting rid of constants) doesn’t mess
up the location of the maximum, but it does change the curvature of the
function at the maximum.

And we use the curvature at the maximum to estimate our standard errors.

So doesn’t getting rid of constants change the estimates we get of our
standard errors?

Not exactly.
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Appendix

Appendix

As we’ll talk about in the next couple weeks, the standard error of MLEs
are, by definition,

Var(θ̂MLE ) = I−1(θ̂MLE ) =

[
− E

(
∂2`

∂`2

)]−1

I−1(θ̂MLE ) is the inverse of the Fisher information matrix, evaluated at
θ̂MLE .[
− E

(
∂2`
∂`2

)]−1

is the inverse of the negative Hessian matrix.

Notice that the Hessian is the expected value of the second derivative of
the log likelihood, not the likelihood.
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Appendix

Appendix

Because the standard errors are a function of the log likelihood, it doesn’t
matter if we keep the constants in or not. They’ll drop out when we
differentiate anyway.
Here’s an example with the Poisson likelihood:

L(λ|y) = k(y)
λye−λ

y !

`(λ|y) = log(k(y)) + y log(λ)− λ− log(y !)

∂`

∂λ
= 0 +

y

λ
− 1− 0

All the constants disappear when you take the first derivative of the
log-likelihood, so it didn’t matter if you kept them in the first place!

Which means that when we take out constants we’ll get the same
maximum likelihood estimates and the same standard errors on those
estimates, regardless of whether we remove constants or not. Magic!
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Appendix

Appendix

When we switch from likelihoods to log-likelihoods we use the trick that

log

( n∏
i=1

xi

)
=

n∑
i=1

log(xi )

If xi has 3 elements, then:

log

( n∏
i=1

xi

)
= log(x1 · x2 · x3)

And by our logarithm rules:

log

( n∏
i=1

xi

)
= log(x1) + log(x2) + log(x3)

log

( n∏
i=1

xi

)
=

n∑
i=1

log(xi )
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