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Replication Paper and other logistics

Replication Paper

Read Publication, Publication on Gary’s website.

Find a partner to coauthor with.

Find a set of papers you would be interested in replicating.

1 Recently published (in the last two years).
2 From a top journal in your field.

Think American Political Science Review or American Economic
Review, not the Nordic Council for Reindeer Husbandry Research’s
Rangifer. Unless your field is reindeer husbandry.

3 Use methods at least as sophisticated as in this class (more than just
basic OLS).
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Replication Paper and other logistics

Replication Paper

Have a classmate approve your choice of article. They should make
sure it fits the criteria listed in Publication, Publication.

Each set of partners should submit a PDF of your article, a brief (2-3
sentence) explanation for why you picked it, and the name of the
person who checked that it met the requirements in Publication,
Publication.

Begin to find the data. Some journals require authors to submit their
data to the journal. Some authors you’ll have to email directly for the
data.
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Replication Paper and other logistics

Canvas

Use the discussion board on Canvas. You’ll get an answer quicker
than if you email us. Please don’t paste big chunks of code though.
You don’t want people copying your work.

Everyone should change their notification preferences in Canvas.
We’ll be using the “Announcements” feature as a way to email the
class. The only way you’ll get these messages is if you change your
preferences.
First you have to make sure your email address is linked to Canvas.
Go to ‘Settings’ in the top right, then on the far right under ‘Ways to
Contact’ you should see your email address. If it’s not there, be sure
to add it.
Then change your notification settings by by clicking ‘Settings’ in the
top right, and then ‘Notifications’ on the left, and choosing ‘Notify
me right away’ for ‘Announcement.’
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Replication Paper and other logistics

This week’s homework

By later tonight there will be two assignments on the Quizzes section
on Canvas

1 The second problem set, which you’ll complete exactly as you did last
week

2 An assessment problem, which you must complete independently and
can only submit one time to Canvas

We won’t answer any questions about R code or anything on the
assessment problem. If you have a clarifying question, email all three
of us and we’ll post an answer on Canvas if we think we need to
clarify something about the question.
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Replication Paper and other logistics

Debugging R code

OLS <- function(y,X){

X <- as.matrix(cbind(1,X))

betas <- solve(X %*% X) %*% t(X) %*% y

return(betas)

}

OLS(y.sim, covs)

Error in X %*% X : non-conformable arguments
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Replication Paper and other logistics

Debugging R code

First create objects in your workspace that are the same name as the
arguments in your function

X <- covs

y <- y.sim
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Replication Paper and other logistics

Debugging R code

Next, step through each line of code inside your function and check to
make sure the results look like they’re supposed to.

> X <- as.matrix(cbind(1,X))

> head(X)

1 x1 x2 x3

[1,] 1 2.347927 -3.490413 14.657524

[2,] 1 4.104924 -11.292412 8.288408

[3,] 1 1.650112 -5.283454 9.886145

[4,] 1 3.428719 -1.956373 15.244391

[5,] 1 3.621538 -5.238201 11.896115

[6,] 1 5.347933 -5.765387 12.549702
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Replication Paper and other logistics

Debugging R code

When you get an error, stop and figure out what’s wrong

> betas <- solve(X %*% X) %*% t(X) %*% y

Error in X %*% X : non-conformable arguments

> solve(X %*% X)

Error in X %*% X : non-conformable arguments

> t(X) %*% y

[,1]

1 35436.61

x1 105809.93

x2 -216456.24

x3 376985.23
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Replication Paper and other logistics

Debugging R code

Once you’ve isolated the problem, figure out what you need to do to fix it

> solve(X %*% X)

Error in X %*% X : non-conformable arguments

> dim(X)

[1] 1000 4

> solve(t(X) %*% X)

1 x1 x2 x3

1 0.0129365839 -7.370667e-04 5.463082e-04 -6.817348e-04

x1 -0.0007370667 2.725400e-04 4.691896e-07 -5.747609e-06

x2 0.0005463082 4.691896e-07 1.026750e-04 -2.867793e-06

x3 -0.0006817348 -5.747609e-06 -2.867793e-06 6.643738e-05
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Replication Paper and other logistics

Debugging R code

Now rerun the corrected code

> X <- covs

> X <- as.matrix(cbind(1,X))

> betas <- solve(t(X) %*% X) %*% t(X) %*% y

> betas

[,1]

1 5.1839790

x1 0.4499720

x2 -3.8968102

x3 0.9001369
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Types of uncertainty

Types of uncertainty

Estimation uncertainty: “arises from not knowing [the parameters]
perfectly, an unavoidable consequence of having fewer than an infinite
number of observations”
Under the likelihood framework, we assume that there’s a true value of the
parameters that exists in the world and with an infinite amount of data we could
estimate their values perfectly

Fundamental uncertainty: “results from innumerable chance events such as
weather or illness that may influence Y but are not included in X”
No matter what we do, the world isn’t deterministic. If we could re-run the world
starting at midnight last night, things would come out pretty similar, but
everything wouldn’t be perfectly the same. Leaves or snow falling from trees
would land in different places; some people would choose to read a book instead
of watch TV, etc.
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Types of uncertainty

Uncertainty in the UPM framework

In the first problem set you simulated outcomes based on this model:

yi ∼ N(µ, σ2 = 36)
µ = 4 + .5xi ,1 − 4xi ,2 + xi ,3

Where is the fundamental uncertainty in this model?

σ2

Where is the estimation uncertainty in this model?

In the standard errors of the four β coefficients and σ2
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Types of uncertainty

Identifying uncertainty in regression results

Call:

lm(formula = y.sim ~ covs$x1 + covs$x2 + covs$x3)

Residuals:

Min 1Q Median 3Q Max

-21.2804 -3.7465 0.0219 3.9893 17.5016

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.18398 0.68112 7.611 6.30e-14 ***

covs$x1 0.44997 0.09886 4.552 5.98e-06 ***

covs$x2 -3.89681 0.06068 -64.219 < 2e-16 ***

covs$x3 0.90014 0.04881 18.441 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.988 on 996 degrees of freedom

Multiple R-squared: 0.816, Adjusted R-squared: 0.8154

F-statistic: 1472 on 3 and 996 DF, p-value: < 2.2e-16
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Data Generation Processes and Probability Distributions

How do we build or select a statistical model?

Imagine a friend comes to you with a bunch of data, and they want you to
help build a model that helps predict some outcome of interest.

What are the first questions you should ask them?

1 What is the dependent variable?

2 What was the data generation process that created that dependent
variable?
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Data Generation Processes and Probability Distributions

Fundamental Uncertainty and Stochastic Models

“If we played them ten times, they might win nine. But not this game.
Not tonight.”

- Coach Herb Brooks in Miracle

Or put another way:

“If Y is whether the Soviet team beats us, then Y ∼ Bern(0.9). But
ytonight = 0.”

- Coach Herb Brooks in Miracle

Even the most certain things have fundamental uncertainty around them.
We use the stochastic component of our models to capture this fact.
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Data Generation Processes and Probability Distributions

So why become familiar with probability distributions?

Several reasons:

You can pick the probability distribution that corresponds with the
data generation process of your dependent variable.

You can fit models to a variety of data. Not just Normal data!

You can help your friends or colleagues build a good statistical model
for predictive or descriptive inference

What do we have to know about probability distributions in order to apply
them to a particular problem?

You have to know the “stories” behind them

You know to pick a distribution which corresponds with the DGP for
your dependent variable

You have to understand the assumptions you’re making them you
pick that distribution
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Discrete Distributions
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Discrete Distributions

The Bernoulli Distribution

The story: flipping a single coin

The Bernoulli distribution has one parameter, π, which is the
probability of “success”.

If Y ∼ Bern(π), then y = 1 with success probability π and y = 0
with failure probability 1− π.

Ideal for modeling one-time yes/no (or success/failure) events.
Other examples:

one voter voting yes/no
a patient living or dying in a cancer drug trial
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Discrete Distributions

The Bernoulli Distribution

Y ∼ Bernoulli(π)

y can take on a value of either 0 or 1. Nothing else.

probability of success: π ∈ [0, 1]

p(y |π) = πy (1− π)(1−y)

E (Y ) = π

Var(Y ) = π(1− π)

rbinom(100, size = 1, prob = .7)

[1] 0 0 1 1 1 1 1 0 1 1 1 1 1...

Gov 2001 Section Types of error and probability distributions February 4, 2015 23 / 54



Discrete Distributions

The Binomial Distribution

The story: flipping a coin a bunch of times and counting how many
times it came up heads

The Binomial distribution is the total of a bunch of Bernoulli trials.

Two parameters: probability of “success”, π, and number of trials, n
Generally you must know the number of trials that generated your data. If

you don’t, or if there’s a huge number of trials, you might want to use a

different distribution.

Examples:

You flip a coin three times and count the total number of heads you
got. (The order doesn’t matter.)
The number of women in a group of 10 Harvard students
The number of snowy days in the seven-day week
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Discrete Distributions

The Binomial Distribution

Histogram of Binomial(20,.3)
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Y ∼ Binomial(n, π)

y = 0, 1, . . . , n

number of trials: n ∈ {1, 2, . . . }

probability of success: π ∈ [0, 1]

p(y |π) =
(n
y

)
πy (1− π)(n−y)

E (Y ) = nπ; Var(Y ) = nπ(1− π)

rbinom(100, size = 5,

prob = .7)

4 4 5 5 3 5 4 2 3 5...

Gov 2001 Section Types of error and probability distributions February 4, 2015 25 / 54



Discrete Distributions

The Multinomial Distribution

The story: rolling a dice (even or unevenly weighted) a bunch of
times and counting how many times each number comes up

Generalization of the binomial, which is just a special case of the
multinomial

Two parameters: number of trials, n, and a vector of probabilities of
each of the K outcomes, p = {p1, p2, ...pK}
Multinomial assumes that you have mutually exclusive outcomes.

Examples:

you toss a die 15 times and count how many times 1, 2,...6 show up
election vote totals where there’s 3+ candidates to choose from
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Discrete Distributions

The Multinomial Distribution

Y ∼ Multinomial(n, π1, . . . , πK )

yi is a vector of counts of successes for each outcome, where each count
ranges from 0 to n; the sum of this vector must equal n

number of trials: n ∈ {1, 2, . . . }

probability of success for outcome k : πk ∈ [0, 1];
∑K

k=1 πk = 1
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Discrete Distributions

The Multinomial Distribution

p(y|n,π) = n!
y1!y2!...yK !

πy11 π
y2
2 . . . πyKK

E (Y ) = {nπ1, nπ2, ...nπK}

Var(Y ) = {nπ1(1− π1), nπ2(1− π2), ...nπK (1− πK )}

rmultinom(100, size = 5, prob = c(.2,.4,.3,.1))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0 2 0 0 4 0 3

[2,] 2 2 1 2 2 1 2 1

[3,] 2 2 2 2 3 0 2 0

[4,] 1 1 0 1 0 0 1 1
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Discrete Distributions

What is this?

It’s a Prussian soldier getting kicked in the head by a horse.

Also, it’s the logo for Stata Press
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Discrete Distributions

The Poisson Distribution

The story: count the number of times an (uncommon) event
happens
One parameter: the rate of occurrence, usually called λ
Represents the number of events occurring in a fixed period of time
or in a specific distance, area or volume.
Can never be negative – so, good for modeling events.
Assumes that you have lots of trials (or lots of “opportunities” for an
event to happen)
Assumes the probability of a “success” on any particular trial is tiny
Makes a potentially strong assumption about the mean and variance

Examples:
Number of snowflakes that hit a 1” x 1” square on the sidewalk during
a snowstorm
Number of executive orders a president issues in a week
Number Prussian solders who died each year by being kicked in the
head by a horse (Bortkiewicz, 1898)
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Discrete Distributions

The Poisson Distribution

Histogram of Poisson(5)
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y = 0, 1, . . .

rate of occurrence parameter, λ, is
always greater than zero

p(y |λ) = e−λλy

y !

E (Y ) = λ; Var(Y ) = λ

rpois(100, lambda = 2)
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Continuous Distributions
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Continuous Distributions

The Univariate Normal Distribution

The story: any outcome that can take any real number as a value

Describes data that cluster in a bell curve around the mean.

It’s tough to think of examples of things are are truly unbounded, so
be careful not to extrapolate your results outside of the range of valid
outcomes.
If we’re using a normal distribution to model vote outcomes, don’t tell
me that you predict a candidate to get 110% of the vote
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Continuous Distributions

The Univariate Normal Distribution

Unless you’re studying Pakistan

Gov 2001 Section Types of error and probability distributions February 4, 2015 34 / 54



Continuous Distributions

The Univariate Normal Distribution

Or Vladimir Putin
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Continuous Distributions

The Univariate Normal Distribution
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Y ∼ Normal(µ, σ2)

y ∈ R

mean: µ ∈ R

variance: σ2 > 0

p(y |µ, σ2) = 1
σ
√
2π

exp
(
− (y−µ)2

2σ2

)
E (Y ) = µ; Var(Y ) = σ2

rnorm(100, mean = 0, sd = 1)

-1.2167436558 -0.8748603823

-0.2917406643...
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Continuous Distributions

The Uniform Distribution

The story: Any value in the interval you chose is equally probable.

Two parameters: a and b (or α and β), lower and upper bounds of
the range of possible results

Intuitively easy to understand, but often examples are discrete

Examples:

the degree of longitude you’re pointing to if you stop a spinning globe
with your finger
the bib number of a person who comes in first in a race (discrete)
drawing a ball from a tumbler in a lottery (also discrete)
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Continuous Distributions

The Uniform Distribution
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Y ∼ Uniform(α, β)

y ∈ [α, β]

Interval: [α, β]; β > α

p(y |α, β) = 1
β−α

E (Y ) = α+β
2 ; Var(Y ) = (β−α)2

12

runif(100, min=-5, max=10)

-3.4090615 8.7924703

6.8907343...
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Continuous Distributions

The Exponential Distribution

The story: how long do you have to wait until an event occurs?

One parameter: λ, arrival rate of the event

The distribution assumes that your process is memoryless. The
expected time until the event happens is constant, regardless of how
much time has passed since the last event.
E (y) = E (y |y > 1) = E (y |y > 10)...etc . = 1/λ

Examples:

How long until the bus arrives?
Time between bombings in a war-torn country
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Continuous Distributions

The Exponential Distribution
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Y ∼ Expo(λ)

y ∈ [0,∞]

λ > 0

p(y |λ) = λe−λy

E (Y ) = 1
λ ; Var(Y ) = 1

λ2

rexp(100, rate = 3)

0.0062472728 0.4941267226

0.1309825860...
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Continuous Distributions
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Simulating from Distributions

Coding a density function from scratch

In later problem sets, you’re going to have to code likelihood functions in
R.

Often you’ll be able to use canned functions like rnorm() or rpois(), but
sometimes your likelihood function won’t look like a distribution you’re
familiar with and you’ll have to code the density from scratch.

We’re going to get practice coding from scratch by programming the PDF
of the normal distribution.

To do this we have to first write a function which takes the arguments y ,
µ, and σ.
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Simulating from Distributions

Coding the PDF of the normal distribution

Recall that the PDF of a normal distribution is:

p(y |µ, σ2) = 1
σ
√
2π

exp
(
− (y−µ)2

2σ2

)
If we want to code this into R, we to set up a new function which takes
the arguments y , µ, and σ:

normal <- function(y, mu, sigma){ # y must go first!

exp(-(y - mu) ^ 2 / (2 * sigma^2)) / (sigma * sqrt(2 * pi))

}
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Simulating from Distributions

Coding the PDF of the normal distribution

We know that, by definition, PDFs must integrate to 1 across their support

Let’s check that we coded our function correctly by using the
integrate() function in R:

integrate(normal, lower = -1000, upper = 1000,

mu = 0, #extra arguments needed for your function

sigma = 1)

1 with absolute error < 9e-05

Notice that we didn’t need to integrate from −∞ to ∞ to get the right
answer.

Gov 2001 Section Types of error and probability distributions February 4, 2015 45 / 54



Simulating from Distributions

Simulating from a coded PDF

Now we want to simulate from our function and plot its PDF. How could
we do this?

To do this we first calculate the density at a bunch of different values of y:

values <- seq(-10, 10, .001)

weights <- normal(values,

mu = 0,

sigma=1)
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Simulating from Distributions

Simulating from a coded PDF

Now we draw samples from our
values vector, where the
probability of drawing each value is
weighted by the densities (weights)

draws <- sample(values,

size = 10000,

prob = weights,

replace = T)

We now have a vector of 10000
draws from the PDF we coded. We
use them to plot the PDF

Histogram of simulations from our normal function
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Simulating from Distributions

Using simulations to integrate

The draws we took from our function can also be used to integrate

We could use the integrate() function, but for some complicated
likelihoods it might be very slow or not work

integrate(normal, lower = -1.96, upper = 1.96,

mu = 0,

sigma = 3)

0.9500042 with absolute error < 1e-11

Or we can use the draws we took:

mean(draws > -1.96 & draws < 1.96)

[1] 0.9506
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Distribution Transformations

Transforming Distributions

X ∼ p(x |θ)
y = g(x)
How is y distributed?

For example, if X ∼ Exponential(λ = 1) and y = log(x)

y ∼?
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Distribution Transformations

Transforming Distributions

It is NOT true that p(y |θ) ∼ g(p(x |θ)). Why?
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Distribution Transformations

Transforming Distributions

The Rule

X ∼ px(x |θ)

y = g(x)

py (y) = px(g−1(y))

∣∣∣∣dg−1dy

∣∣∣∣
What is g−1(y)? The inverse of y=g(x).

What is
∣∣∣dg−1

dy

∣∣∣? The Jacobian.
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Distribution Transformations

Transforming Distributions – the log-Normal Example

For example,

X ∼ Normal(x |µ = 0, σ = 1)

y = g(x) = ex

what is g−1(y)?

g−1(y) = x = log(y)

What is dg−1

dy ?

d(log(y))

dy
=

1

y

Gov 2001 Section Types of error and probability distributions February 4, 2015 53 / 54



Distribution Transformations

Transforming Distributions – the log-Normal Example

Put it all together

py (y) = px (log(y))

∣∣∣∣1y
∣∣∣∣

Notice we don’t need the absolute value because y > 0.

py (y) =
1√
2π

e−
1
2
(log(y))2 1

y

Y ∼ log-Normal(0, 1)

Challenge: derive the chi-squared distribution.
X ∼ N(µ, σ2)
Y = X 2
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