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Logistics

Logistics

Pset 6 due tonight. No new pset this week

Submit a title and abstract for your final paper

One per group
On Canvas > Modules > Replication Paper > Replication Abstract >
Submit Assignment (on right)

RSVP to the party at Gary’s house if you haven’t already

Saturday, April 19 at 12:30
Near the Green Line and the 86 bus that goes through Harvard Square
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Logistics

From last week

I sincerely appreciate feedback on how to make these sections more helpful
for you.
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Duration Models Basics Review

Review from last week

Three reasons we use duration models:

1. OLS assumes Y is Normal but duration dependent variables are
always positive (number of years, number of days. etc.)

2. Duration models can handle time-varying covariates

3. Duration models can handle censoring
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Duration Models Basics Review

Duration Model Notation

T: a continuous, positive random variable representing the
duration/survival times (T = Y )

f(t): the probability density function of T (the stochastic component)

F(t): the CDF of f (t),
∫ t

0 f (u)du = P(T ≤ t), which is the probability of
an event occurring before (or at exactly) time t

Survivor function: the probability of surviving (i.e. no event occurring)
until at least time t: S(t) = 1− F (t) = P(T > t)

Hazard function or hazard rate: the probability of an event at time t
given survival up to time t: h(t) = P(t ≤ T < t + τ |T ≥ t)
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Duration Models Basics Review

Duration Model Notation

h(t) = P(t ≤ T < t + τ |T ≥ t)

= P(event at t|survival up to t)

=
P(survival up to t|event at t)P(event at t)

P(survival up to t)

=
P(event at t)

P(survival up to t)

h(t) =
f (t)

S(t)
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Duration Models Basics Review

Duration Model Notation

Therefore:

f (t)︸︷︷︸
density function

= h(t)︸︷︷︸
hazard function

· S(t)︸︷︷︸
survival function

f (t)︸︷︷︸
density function

=
f (t)

S(t)︸ ︷︷ ︸
hazard function

· S(t)︸︷︷︸
survival function
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Duration Models Basics Review

Handling censoring

We know that censored observations they survived at least until some
observed time, tc , and that their true duration, t is greater than or equal
to tc .

For each observation, let’s create a censoring indicator variable, ci , such
that

ci =

{
1 if censored
0 if not censored
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Duration Models Basics Review

Censoring

We can incorporate the information from the censored observations into
the likelihood function.

L =
n∏

i=1

[f (ti )]1−ci [P(Ti ≥ tci )]ci

=
n∏

i=1

[f (ti )]1−ci [1− F (ti )]ci

=
n∏

i=1

[f (ti )]1−ci [S(ti )]ci

Uncensored observations contribute to the density function and censored
observations contribute to the survivor function in the likelihood.
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Exponential Model

The Poisson Process

Popular example of stochastic process

Principles of Poisson process:

Independent increments: number of events occurring in two disjoint
intervals is independent
Stationary increments: probability distribution of number of
occurrences depends only on the time length of interval (because of
common rate)

Events occur at rate λ (expected occurrences per unit of time)

Nτ = number of arrivals in time period of length τ

Nτ ∼ Poisson(λτ)
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Exponential Model

The Poisson Process

Exponential distribution measures the times between events in a
Poisson process

T = time to wait until next event in a Poisson process with rate λ

T ∼ Expo(λ)

Memorylessness property: how much you have waited already is
irrelevant

P(T > t + k|T > t) = P(t > k)

P(T > 3 + 5|T > 3) = P(t > 5)
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Exponential Model

Two Possible Parameterizations of the Exponential Model

λi > 0 is the rate parameter

Ti ∼ Exponential(λi )

f (ti ) = λie
−λi ti

E (Ti ) =
1

λi

θi > 0 is scale parameter (θi = 1
λi

)

Ti ∼ Exponential(θi )

f (ti ) =
1

θi
e
− ti

θi

E (Ti ) = θi

Stephen Pettigrew Duration Models and Matching April 9, 2014 16 / 64



Exponential Model

The Exponential Model
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Exponential Model

Link Functions

If you use a rate parameterization with λi :

E (Ti ) =
1

λi
=

1

exp(xiβ)

Positive β implies that expected duration time decreases as x
increases.

If you use a scale parameterization with θi

E (Ti ) = θi = exp(xiβ)

Positive β implies that expected duration time increases as x
increases.
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Exponential Model

Hazard Function for Rate Parametrization

For Ti ∼ Exponential(λi ):

f (t) = λie
−λi t

S(t) = 1− F (t)

= 1− (1− e−λt)

= e−λi t

h(t) =
f (t)

S(t)

=
λie

−λi t

e−λi t

= λi

Stephen Pettigrew Duration Models and Matching April 9, 2014 19 / 64



Exponential Model

Hazard Function for Scale Parametrization

For Ti ∼ Exponential(θi ):

f (t) =
1

θi
exp[− t

θi
]

S(t) = 1− F (t)

= 1− (1− exp[− t

θi
])

= exp[− t

θi
]

h(t) =
f (t)

S(t)

=
1
θi

exp[− t
θi

]

exp[− t
θi

]
=

1

θi
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Exponential Model

Let’s work with the scale parametrization

Note that h(t) = 1
θi

, which does not depend on t!

The exponential model thus assume a flat hazard: Every unit /
individual has their own hazard rate, but it does not change over time
Connected to memorylessness property of the exponential
distribution

Modeling h(t) with covariates:

h(t) =
1

θi
= exp[−xiβ]

Positive β implies that hazard decreases and average survival time
increases as x increases.
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Exponential Model

Estimation via ML:

L =
n∏

i=1

[f (ti )]1−ci [1− F (ti )]ci

=
n∏

i=1

[
1

θi
e
− ti

θi

]1−ci [
e
− ti

θi

]ci
` =

n∑
i=1

(1− ci )(ln
1

θi
− ti
θi

) + ci (−
ti
θi

)

=
n∑

i=1

(1− ci )(ln e−xiβ − e−xiβti ) + ci (−e−xiβti )

=
n∑

i=1

(1− ci )(−xiβ − e−xiβti )− ci (e
−xiβti )

=
n∑

i=1

(1− ci )(−xiβ)− e−xiβti
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Exponential Model

Quantities of interest

If our outcome variable is how long a parliamentary government lasts, and
we’re interested in the effect of majority versus minority governments. We
could calculate:

Find the hazard ratio of majority to minority governments

Expected survival time for majority and minority governments

Predicted survival times for majority and minority governments

First differences in expected survival times between majority and
minority governments
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Exponential Model

Hazard Ratios

HR =
h(t|xmaj)

h(t|xmin)

=
e−xmajβ

e−xminβ

=
e−β0e−x1β1e−x2β2e−x3β3e−xmajβ4e−x5β5

e−β0e−x1β1e−x2β2e−x3β3e−xminβ4e−x5β5

=
e−xmajβ4

e−xminβ4

= e−β4

Hazard ratio greater than 1 implies that majority governments fall faster
(shorter survival time) than minority governments.
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Exponential Model
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Exponential Model

Expected (average) Survival Time

E (T |xi ) = θi

= exp[xiβ]
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Exponential Model

Predicted Survival Time

Draw predicted values from the exponential distribution.

0 50 100 150

0.
00

0.
01

0.
02

0.
03

0.
04

Distribution of Predicted Duration

predicted duration in months

D
en

si
ty

Majority Governments
Minority Governments

Stephen Pettigrew Duration Models and Matching April 9, 2014 27 / 64



Exponential Model

First Differences

E (T |xmaj)− E (T |xmin)
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Exponential Model

Quantities of Interest in Zelig

x.min <- setx(z.out,numst2=0)

x.maj <- setx(z.out,numst2=1)

s.out <- sim(z.out, x=x.min,x1=x.maj)

summary(s.out)

plot(s.out)
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Exponential Model
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Exponential Model

The exponential model is nice and simple, but the assumption of a flat
hazard may be too restrictive.

What if we want to loosen that restriction by assuming a monotonic
hazard?

We can use the Weibull model.
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Weibull Model

The Weibull Model

Similar to how we generalized the Poisson into a Negative Binomial by adding a
parameter, we can do the same with the Exponential by turning it into a Weibull:

Ti ∼ Weibull(λi , α)

E (Ti ) = λiΓ

(
1 +

1

α

)
λi > 0 is the scale parameter and α > 0 is the shape parameter.
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Weibull Model

The Weibull Model

f (ti ) =

(
α

λαi

)
tα−1
i exp

[
−
(
ti
λi

)α]

Model λi with covariates in the systematic component:

λi = exp(xiβ)

Positive β implies that expected duration time increases as x increases.
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Weibull Model

f (ti ) =

(
α

λαi

)
tα−1
i exp

[
−
(
ti
λi

)α]
S(ti ) = 1− F (ti )

= 1− (1− e−(ti/λi )
α

)

= e−(ti )/λi )
α

h(ti ) =
f (ti )

S(ti )

=

(
α
λαi

)
tα−1
i exp

[
−
(

ti
λi

)α]
e−(ti/λi )α

=

(
α

λi

)(
ti
λi

)α−1

=

(
α

λαi

)
tα−1
i
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Weibull Model

Hazard monotonicity assumption

h(ti ) is modeled with both λi and α and is a function of ti . Thus, the
Weibull model assumes a monotonic hazard.

If α = 1, h(ti ) is flat and the model is the exponential model.
If α > 1, h(ti ) is monotonically increasing.
If α < 1, h(ti ) is monotonically decreasing.
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Weibull Model

The shape parameter α for the Weibull distribution is the reciprocal of the
scale parameter given by survreg().

The scale parameter given by survreg() is NOT the same as the scale
parameter in the Weibull distribution, which should be λi = exiβ.
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Weibull Model

Hazard Ratios

One quantity of interest is the hazard ratio:

HR =
h(t|x = 1)

h(t|x = 0)

With the Weibull model we make a proportional hazards assumption:
hazard ratio does not depend t.
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Weibull Model

Other Parametric Models

Gompertz model: monotonic hazard

Log-logistic or log-normal model: nonmonotonic hazard

Generalized gamma model: nests the exponential, Weibull,
log-normal, and gamma models with an extra parameter

But what if we don’t want to make an assumption about the shape of the
hazard?
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Weibull Model

The Cox Proportional Hazards Model

Often described as a semi-parametric model.
Pros:

Makes no restrictive assumption about the shape of the hazard.

A better choice if you want the effects of the covariates and the
nature of the time dependence is unimportant.

Cons:

Only quantities of interest are hazard ratios.

Can be subject to overfitting

Shape of hazard is unknown (although there are semi-parametric ways
to derive the hazard and survivor functions)
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Weibull Model

More resources about survival modeling

Box-Steffensmeier, Janet M. and Bradford S. Jones. 2004. Event History Modeling. Cambridge
University Press.

King, Gary, James E. Alt, Nancy E. Burns, and Michael Laver. 1990. “A Unified Model of
Cabinet Dissolution in Parliamentary Democracies.” American Journal of Political Science
34(3): 846-971

Long, S. J. (1997) Regression Models for Categorical and Limited Dependent Variables.
Thousand Oaks, CA: SAGE Publications, Inc.

McCullagh, Peter; Nelder, John (1989). Generalized Linear Models, Second Edition. Boca
Raton: Chapman and Hall/CRC

Lam, Patrick. Survival Model Notes. http://www.patricklam.org/teaching.html
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Causal inference background

Setup

Let’s denote treatment as T ∈ 0, 1. T = 1 is treated group, T = 0 is
control group.

We have an outcome Y

SUTVA: stable unit treatment value assumption

No interference between units - i.e. units don’t talk to each other
about the experiment
No hidden levels of treatment

Under SUTVA, we have 2 potential outcomes per unit:

Yi (1) and Yi (0)

Before we think about how treatment was assigned, we can express
this information in a potential outcomes table
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Causal inference background

Potential Outcomes Table

i Name Yi (1) Yi (0)
1 George Washington Y1(1) Y1(0)
2 Toucan Sam Y2(1) Y2(0)
3 Anne Boleyn Y3(1) Y3(0)
4 Lisa Nowak Y4(1) Y4(0)
5 Dr. Phil Y5(1) Y5(0)
6 Herschel Walker Y6(1) Y6(0)

Individual causal effect for George Washington: Y1(1)-Y1(0)

All potential outcomes are fixed pre-treatment characteristics of individuals
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Causal inference background

Defining the Estimand

We should define an estimand before we think about estimation! What is
a causal quantity we are interested in?

For example, an average treatment effect (ATE):
E[Yi (1)− Yi (0)]
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Causal inference background

Fundamental Problem of Causal Inference

i Name Yi (1) Yi (0) Ti

1 George Washington Y1(1) ? 1
2 Toucan Sam Y2(1) ? 1
3 Anne Boleyn ? Y3(0) 0
4 Lisa Nowak Y4(1) ? 1
5 Dr. Phil ? Y5(0) 0
6 Herschel Walker ? Y6(0) 0

The fundamental

problem of causal inference is that we only observe one potential
outcome per unit!
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Causal inference background

Fundamental Problem of Causal Inference

How do we estimate the average treatment effect (ATE) from observed
data?

E[Yi (1)− Yi (0)]

Causal inference is a missing data problem!

We’ll have to impute missing potential outcomes.
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Causal inference background

Unconfoundedness

To do this, we generally make another assumption: unconfoundedness of
treatment,

P(T |Y (0),Y (1),X ) = P(T )

Unconfoundedness translates to the following:

E[Y (1)] = E[Y (1)|T = 1] = E[Y (1)|T = 0]

E[Y (0)] = E[Y (0)|T = 1] = E[Y (0)|T = 0]

Now:

E[Y (1)− Y (0)] = E[Y (1)]− E[Y (0)]

= E [Y (1)|T = 1]− E [Y (0)|T = 0]

= E [Y obs |T = 1]− E [Y obs |T = 0]
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Causal inference background

Causal Effects with Unconfoundedness

T=1 (Treatment) T=0 (Control)

E [Y |T = t] 6.6 2.4

If this is our data, how would we estimate the average causal effect of T
on Y ? Assuming unconfoundedness:

E[Y (1)− Y (0)] = E [Y (1)|T = 1]− E [Y (0)|T = 0]

= E [Y obs |T = 1]− E [Y obs |T = 0]

= 6.6− 2.4

= 4.2
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Causal inference background

Unconfoundedness

Unconfoundedness implies:

1. E[Y (1)] = E[Y (1)|T = 1] = E[Y (1)|T = 0]

2. E[Y (0)] = E[Y (0)|T = 1] = E[Y (0)|T = 0]

If we only assume #2 then we can still calculate the average treatment
effect on the treated (ATT):

E [Y (1)− Y (0)|T = 1] = E [Y (1)|T = 1]− E [Y (0)|T = 1]

= E [Y (1)|T = 1]− E [Y (0)|T = 0]

= E [Y obs |T = 1]− E [Y obs |T = 0]
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Causal inference background

ATT vs. ATE vs. ATC vs. FSATT

Average Treatment Effect: need counterfactuals for all units
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Causal inference background

ATT vs. ATE vs. ATC vs. FSATT

Average Treatment Effect on the Treated: need counterfactuals for all
treated units
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Causal inference background

ATT vs. ATE vs. ATC vs. FSATT

Average Treatment Effect on the Controls: need counterfactuals for
all control units Think of this as the group that we need to find
counterfactuals for.
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Causal inference background

ATT vs. ATE vs. ATC vs. FSATT

Feasible Sample Average Treatment Effect on the Treated: need
counterfactuals for all units which we can feasibly match to other units
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Causal inference background

CTD

Connect the dots

Yes, I did an online connect the dots
puzzle while prepping these slides

Yes, I did screw up as I was doing
the puzzle which apparently upset

this cartoon bear:
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Causal inference background

Confounding (with measured covariates)

What if we do not have unconfoundedness?

P(T |Y (0),Y (1),X ) = P(T |X )

Consequence: imbalance between treated and control units in X

Possible solution: matching
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Causal inference background

An example with confounding

Suppose that those who take the treatment are systematically different
than those who don’t take the treatment.

T=1 (Treatment) T=0 (Control)

E [Y |T = t,X = 0] -6 2
% Data .15 .40

E [Y |T = t,X = 1] 12 4
% Data .35 .10

In this case, X = 0 strata responds negatively to treatment and X = 1
strata responds positively to treatment. Moreover, it appears that those
who will be negatively affected by treatment are opting for control.
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Causal inference background

General Matching Strategy

1. Condition on observed, pretreatment variables such that treatment
assignment is uncorrelated with potential outcomes conditional on
those covariates

2. Match data according to the strata defined by the values of these
variables

3. Assess our matching procedure (check balance)
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Causal inference background

General Matching Strategy

4a. Recombine these strata-specific causal effects into an overall
treatment effect by appropriately weighting

4bi. Proceed with parametric analysis (regression, t-test, etc.)

5. Sensitivity testing for either the confoundedness assumption or the
parametric model.
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Causal inference background

Matching and Causal Inference

If you’re interested in the causal effect of A on B, will the results of your
parametric analysis be interpretable as a causal effect if you match?

NO t
unless the covariates that you use to match perfectly characterize the data

generation process

The purpose of matching for causal inference is to make your treatment
seem as if it were truly randomly assigned
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Causal inference background

Get ready to be disappointed...

If you have unmeasured
confounders: matching 6= causal

If you have an omitted variable:
matching 6= causal

If you have the wrong functional
relationship between confounders
and treatment: matching 6= causal

So when can matching help us to make causal statements?
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Causal inference background

Now the good news...

There’s still instances where matching helps you make causal statements:

You ran an experiment, and your randomization didn’t work perfectly
but you know where it went wrong

You know all covariates which predict treatment, and you have them
measured

How matching is still useful even is you’re not making causal statements:

Matching can help alleviate model dependence

Matching can help deal with outliers

Matching can help you understand the convex hull of your data and
help you avoid extrapolating outside of it
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Causal inference background

Next week: Matching in R, balance checking, multiple equation models
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Causal inference background

Questions?
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